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The stability properties of an inviscid, parallel, incompressible, free shear flow are 
studied. The shear profile is that of an unbounded, plane Couette flow containing a 
defect, or transition zone, whose magnitude E is assumed to be small. The linearized 
eigenvalue problem is solved first for discretized models. When the defect has a finite 
thickness, the instability is confined to longitudinal wavenumbers, k < O(e) ,  in 
contrast to the more common O( 1 )  bandwidth, in units of inverse shear length. This 
observation motivates the application of a long-wave expansion to a smooth defect 
profile. A double expansion in both k and E captures the whole waveband of the 
instability, and yields convergent expansions for the unstable eigenfunctions and for 
the dispersion relation describing their growth rate. The fastest growing modes are 
determined, and their back-reaction on the basic shear is calculated. 

1. Introduction and formulation of the problem 
The stability or instability of shear flows is a subject of major importance in 

geophysics and astrophysics, and occupies a central place in the studies of 
hydrodynamic stability (Drazin & Reid, 1981). Analytic investigation is often 
complicated by the absence of stability boundaries and the tendency of many shear 
flows to be subscritically unstable, i.e. to be unstable with respect to finite amplitude 
perturbations for parameter values for which linear theory predicts stability. In  
addition, shear-flow problems are generally devoid of naturally appearing small 
parameters, although these can be introduced by restricting the analysis to large 
longitudinal wavelengths, i.e. small wavenumbers, k .  Such long-wave expansions, 
hereinafter LWE, have led to a number of useful results (Drazin & Howard, 1962; 
Tatsumi, Gotoh & Ayukawa 1964), but are difficult to apply to the usually dominant 
instability on the scales of the shear itself. 

The above considerations suggest the study of a problem containing a small 
parameter in which the dominant instability occurs only a t  the long wavelengths. 
The choice of problem, suggested to us by J.-P. Zahn, is motivated by the likelihood 
that unbounded, plane Couette flow is unstable with respect to finite-amplitude 
perturbations that introduce inflexion points into the flow. We call such a 
perturbation a defect. The resulting flow, Couette flow, together with the defect, 
satisfies the necessary conditions for instability. Of interest is the effect of the 
Couette flow on the instability generated by the defect. To formulate the problem, 
we assume that the defect is maintained, and study the linear stability of the 
combined shear flow. The presence of the defect introduces the required small 
parameter into the problem. 

The problems we study are all inviscid, two-dimensional, incompressible, plane- 
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parallel shear flows with velocity of the form u = (u,,(y; e) .O) .  where e indicates the 
dimensionless amplitude of the defect and (x, y) are coordinates parallel and 
transvcrse to the flow. If we write the stream function for a perturbation of the flow 
in the form Y = Re{$@) exp [ik(r-ct)]} then the function $(y) satisfies the Rayleigh 
eauation 

( l . l a )  

where k is the wavenumber of the disturbance in the flow direction, and c is its phase 
speed. Throughout the paper we restrict ourselves to temporal instability, and 
therefore take k to be real. Since ( 1 . 1  a )  depends on k2, we may in fact assume k > 0. 
Consequently, our results are more applicable to free shear flows than to mixing 
layers. As boundary conditions, we impose 

$(*a) = 0, ( l . l b )  

corresponding to an unbounded flow. Equations (1.1) constitute an eigenvalue 
problem for the, possibly complex, phase speed c(k,s). A problem of this type was 
first considered by Gill (1965 ; see also Huerre 1983), who showed quite generally that 
finite boundaries serve to create an amplitude threshold for instability. This is the 
main reason for imposing boundary conditions a t  infinity. The existence of such a 
threshold could explain the apparent absence of two-dimensional, finite amplitude 
instabilities of bounded plane Couette flow noted by Orszag & Kells (1980). Their 
numerical simulations of three-dimensional plane Couette flow do, however, show a 
transition to turbulence even in the absence of linear instability. This appears to be 
caused by three-dimensional inflexion points transverse to the flow, produced by the 
evolution of large-amplitude initial conditions. Thus, whether imposed by hand as 
above, or induced nonlinearly, inflexional corrections to the basic shear appear to 
govern the transition to turbulence. 

Of the three shear flows studied in this paper, the first two are discrete, exactly 
solvable, and serve to motivate the analysis of the smooth profile. The analysis of the 
discrete models is provided in $2, and shows that the bandwidth of the instability is 
reduced by the mean shear to O(e)  near k = 0. The maximum growth rate of the 
instability remains, however, of O(e) ,  its magnitude in the absence of the mean shear. 
These results suggest that  a double expansion, in both k and e ,  may be able to capture 
the entire band of unstable wavenumbers, and, in particular, the fastest growing 
modes. Such an expansion is carried out in $93 and 4 for a smooth defect profile of 
the form uo = y + a  tanh (y), and the suggestion is verified. Indeed, the analysis yields 
a complete description of the unstable eigenfunctions and their growth rates. In  
addition, as shown in the Appendix, the expansions of both the eigenfunctions and 
the dispersion relation in powers of k, converge for small a. These results significantly 
generalize Gill’s (1965) asymptotic analysis of the neutral mode. Finally, a brief 
discussion of the induced mean flow generated by the instability and the role of 
critical layers is presented in $ 5 .  Our conclusions follow in $6. 

2. Discrete models 
In  this section, we consider two discrete profiles containing a defect. The first profile 

is discontinuous a t  y = 0, corresponding to a vortex sheet a t  the origin, but the 
amplitude of the discontinuity is small. The second profile is continuous, but has 
discontinuities in the first derivative. Both problems can be solved by elementary 
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FIGURE 1. The shear profile uo(y )  = y+~[B(y)-8( -y)] for E = 0.3. 

methods (Drazin & Reid 1981), and the solutions are used to motivate the analysis 
undertaken in $3. 

Model A 
The first model consists of a Kelvin-Helmholtz defect in a mean flow, 

uo = Y+E[8(Y)-8(-Y)l ,  (2.1) 

where 8 is the step function. This shear profile is shown in figure 1. The solution of 
the Rayleigh equation is obtained by constructing explicit solutions in the half- 
planes y > 0 and y < 0, and imposing the jump conditions 

[(uo - c )  $4' - u;, $41: = 0, (2.2a) 

and (2.2b) 

a t  y = 0. Since ug = 0 ( y  =l= 0) ,  the solutions take the form 

$4* = a* eTkg (y 3 0). (2.3) 

Applying the jump conditions (2.2) to eliminate the constants u+ yields the 
dispersion relation € 

c2 = - - -€2  

k '  (2.4) 

The dispersion relation is non-analytic a t  k = 0. This functional dependence will be 
found to persist in the smooth profile discussed in $ 3. The physical reason behind the 
divergence as k + O  is quite simple. The vortex sheet a t  y = 0 responsible for the 
velocity discontinuity is unstable in the absence of mean shear to spatially periodic 
disturbances with wavenumbers k in the flow direction. The effect of the mean part 
of uo, i.e. the linear profile u,, = y ,  is to spin up (or down) the resulting vortices via 
advection. The smaller the longitudinal wavenumber k, the larger the vortices 
become, as is readily seen from (2.3), and the larger are the velocities shearing them. 
Consequently, c diverges as k + O .  
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FIGURE 3. The growth rate oi as a function of longitudinal wavenumber k for E = +0.1 
for the shear profile type shown in figure 1. 

For s > 0, the frequency w (  = kc) is purely imaginary, and the system is unstable 
for any E .  The resulting growth rate oi is shown in figure 2 .  In this case, the instability 
is stationary and does not propagate. For s < 0, the behaviour is quite different. 
From (2.4) we find 

This dispersion relation is shown in figures 3 and 4. For k < l/l E 1, the mean shear is 
stabilizing and o is purely real ; the perturbations take the form of neutrally stable 
travelling waves. For c > 0, we find that :  

02= Islk(l-lelk).  (2 .5)  

d o  1 
- > 0  i n O < k < - ,  
dk 21el 

dw 1 1 
- < 0  in-<k<- .  
dk 2 l s l  I E l  

(2.6a) 

(2.6b) 

A similar split occurs on the other branch of the dispersion relation, where c < 0. 
Thus, depending on k, the envelope and the phase may propagate in the same, or in 
opposite directions. Those wavenumbers satisfying k > 1/1 E 1 are all unstable. This is 
the vestige of the Kelvin-Helmholtz instability. 

Model B 

thickness. In this section we therefore consider the profile 
To obtain a more realistic model, one must allow the shear layer to have finite 

(2.7) uo = Y + €.([S(Y - 1) - S( - Y  - 1)l +Y[S(Y + 1) - S(Y - 1)1} 

sketched in figure 5 .  The solutions of the Rayleigh equation now take the form 

Imposing the matching conditions at y = f 1 yields four homogeneous linear 
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FIGURE 3. The frequency w, as a function of longitudinal wavenumber k for E = -0.1 
for the shear profile type shown in figure 1. 
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FIGURE 4. The growth rate wi as a function of longitudinal wavenumber k for E = -0.1 
for the shear profile type shown in figure 1. 

equations for the four unknowns a ,  b, d ,  f. The solvability condition yields the 
dispersion relation 

c2 = - [e2( 1 - e-41c) - 4ek( 1 + E )  + 4k2( 1 + E ) ' ] .  (2.9) 
1 
4k2 

We show the real and imaginary parts of w = ck in figures 6 and 7 for e > 0. 
The dispersion relation (2.9) has the following properties. When E > 0, and k is 

sufficiently large, c2 > 0. All such solutions represent neutrally stable, travelling 
waves. As k + O ,  c 2 + - e / k  in agreement with model A. It follows that there must 
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exist a neutral wavenumber satisfying c(k , )  = 0. To estimate the bandwidth of the 
instability, 0 < k < k,, we expand the bracket in (2.9) in powers of k to obtain 

w 2  = ~ c [ - s + ~ ( i  + 2 s - - 2 ) + ~ 1 ~ 2 € 2 + 0 ( k 3 € 2 ) 1 .  (2.10) 

At the band edge k,, the frequency vanishes. It is simple to show that there is exactly 
one such value of Ic, and that it is O(e) .  To leading order 

li, = c(1-26) + 0(€3). 
The maximum growth rate occurs at $k,, and is given by 

(2.11) 

Wimax = +€( 1 - €). (2.12) 
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FIGURE 7 .  The frequency w, as a function of longitudinal wavenumber k for E = 0.1 
for the shear profile type shown in figure 5 .  

In  contrast to these results we recall that in the absence of the ambient linear shear 
the band edge occurs a t  k, = 0(1), while the growth rate is O(e). Thus the effect of the 
linear shear is to squeeze the band of unstable wavenumbers down to O(e) without 
decreasing the growth rate from what it would be in its absence. Since e is a fixed, 
externally imposed parameter, all unstable wavenumbers satisfy k < O(e). The 
wavenumber k thus becomes a natural small expansion parameter for fixed c + 1.  One 
can, however, do much better, since one may carry out a double expansion in both 
k and e. The resulting long-wave expansion (LWE) is not only simplified by the 
presence of e < 1, but its validity now extends over the whole band of unstable 
wavenumbers. It is this procedure that is applied to a profile with a smooth defect 
in the following section. 

3. The long-wave expansion 
In this section we study a continuous profile with a defect, which we take to be 

uo = y+e tanh y. (3.1) 

This profile has an inflexion point and so satisfies Rayleigh’s necessary condition for 
instability. In the absence of the linear shear the bandwidth of the instability is O(1) 
(Michalke 1964). As indicated in the preceding section it is reasonable to surmise that 
this is no longer the case in the presence of the linear shear. 

To solve Rayleigh’s equation (1 .1)  with the profile (3.1) we employ the long-wave 
expansion (Drazin & Howard 1962). On an unbounded domain, this is a uniform 
perturbation in k only after the correct asymptotic behaviour as y-f f 00 has been 
factored out. Since u,”+O as y + f  co, we have @’+ k2 9 as y+  f 00. We differ 
slightly from standard procedure and factor out the asymptotic behaviour by 
looking for solutions of the form 

(3 .2a)  

FLM 1R9 5 
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where (3.2b) 

and W(Y) = UO(Y) - c. ( 3 . 2 ~ )  

Here the f signs refer to the regions y 2 0, respectively. Note that for unstable 
modes the phase speed c is complex and hence Y' is well defined. In  addition, 
1 Yy'J + 1 as y-f f co, so that the correct asymptotic behaviour is included in the 
explicit exponential decay. Our task is to determine the functions x*(y) in terms of 
a uniform expansion in k. 

We proceed, as usual, by expanding 2' : 

Substituting equations (3.1)-(3.3) into (1.1) and separating orders in k yields a 
recursion relation for the f z  of the form 

(3.4) ( !P'zf;&))r = + 2 Y + (  !P*f;) ' ,  

subject to the conditions f$ = 1, and f:' ( f 00) = 0. The first two solutions are 

and 

(3 .5a)  

(3.56) 

It is possible to formally establish the convergence of the expression (3.3) and to 
estimate the radius of convergence in k, as shown in the Appendix. The resulting 
expressions for qP do not solve Rayleigh's equation unless the dispersion relation 
obtained by imposing continuity on 4 and 4' is satisfied. This dispersion relation is 
obtained and analysed in the following section. 

4. Derivation of the dispersion relation 
The dispersion relation is obtained from the requirement that 9 and 9' are 

continuous across y = 0. The final result does not depend on the value of y a t  which 
the matching conditions are imposed. Since the g5* are defined up to an- unknown 
normalization, we obtain 

x+(O) Y+(O) = Nx-(O) Y-(o), (4.1 u) 

and 

Here M is the constant of proportionality. Eliminating M from (4.1) yields 

(x' Y+)' (0)- k(X+ Y+) (0) = M [ ( x -  Y-)' (0) + k(x- Y-)  ( O ) ] .  (4.1 b) 

which may be rewritten, with the aid of expansions (3.2) and (3.3), in the form 

m 

c. An (8 ,  c) k n  = 0. 
n=o 

(4.3) 
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The coefficients A,  are given by the following expressions : 

A0 = J++&? (4.4a) 

For the profile (3.1), uo(y)  is antisymmetric, and hence equation (1.1) is invariant 
under the transformation y+-y, c + - c * ,  and $+#* (Tatsumi & Gotoh 1960). 
Since this maps an unstable mode at a given k onto another unstable mode, 
uniqueness of the solution requires that c = --c* and $(y) = $* (-y). Hence, 
Re ( c )  = 0. This is not the case when uo(y) is not antisymmetric. We next expand the 
A,  in powers of E .  This serves to simplify the analytical expressions that need to be 
evaluated. We present the details of the procedure for A,. Expanding the integrand 
in powers of E ,  we obtain 

2 tanhr tanh2 r 
(r-ici) ( r  - ic# 

A, = + 3 E 2  ~ + 0 ( ~ 3 ) ] .  (4.5) 

The first integral vanishes. Integrating by parts twice at  O ( E )  and three times at  
0 ( e 2 )  yields 

(4.6) 
* r (tanhr)”’ + $2 l-m dr r2 + c; + o ( E 3 ) .  

* r tanh r sech2 r 
r2  + c: 

A, = 2~ dr 

Applying the same analysis to the O ( k )  term in (4.3), one obtains 

(4.7) A,  = - 2 + 0 ( 2 ) .  

The expansion (4.3) may be proved convergent. The necessary analysis may be 
found in the Appendix. This fact does not, however, establish how rapidly the series 
converges. That is, we do not know at what point we may truncate (4.3) and still 
obtain a credible approximation to the full series. We now show that A,  = O(e2) ,  to 
leading order, suggesting that a low-order truncation of the dispersion relation may 
be accurate. We proceed by noting that 

(tanh r)” 
Y*+1 = esech2(y)-e(y-ici) + 0 ( E 2 ) .  

Applying (4.8) to (3.5a), we see that fc and f;’ are both O ( E ) .  It follows that 
f$ and f$’ are also O ( E ) .  In addition, from (4.6), A, = O(s ) .  It follows that 
A,  = Ail) e + O ( e 2 ) ,  where 

1 

e l0  E 
A?) = lim-~’(O)-&’(O)-2fl(O)-2~(0)]. (4.9) 

5-2 
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FIGURE 8. The growth rate wi was a function of longitudinal wavenumber k / c  for the dispersion 
relation (4.12) obtained via the LWE for profile (3.1). 

Applying expansion (4.8) to (3 .5 ) ,  we obtain 

and (4.10 b)  

Substituting these results into (4.9), we find that 

Ail) = 0. 
We conclude that A ,  = O(c2) .  

To leading order in k and E ,  equations (4.3)-(4.7) yield 

1, dr r tanh r sech2 r 
= k+O(€2) .  

r2 + c t  

(4.11) 

(4.12) 

This equation determines the growth rate wi = kc, as a function of k, as shown in 
figure 8. Note that the integral in (4.12) exists for all ci, including ci = 0, and so is 
O(1). Therefore, for the instability, k = O ( E ) ,  in agreement with our results for the 
profile B. To determine the neutral wavenumber k,, we may set ci = 0 in (4.12). We 
obtain ko = 1.705s. 

A direct comparison may be made between the above, systematic result and Gill’s 
(1965) asymptotic theory. His equation (2.10) is readily extended to a channel whose 
boundaries are a t  y = f R rather than y = 1 yielding 

= - 2  k coth (kR), (4.13) 

where in Gill’s notation, a is the amplitude of the defect imposed upon the Couette 
flow, and c. = ie’p, E’ being the dimensionless width of the defect and p a number of 
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O(1). Setting c = 0, we see that this predicts a threshold amplitude for instability 
which behaves as - 2  

Thus at large R, but long wavelengths (I;&< 1 ) .  the amplitude threshold becomes 
arbitrarily small, in agreement with our calculation. Note, however, that  (4.13) also 
applies for k =0(1). 

As k ?r 0, equation (4.12) indicates that ci + 00. To demonstrate this, we rewrite 
(4.12) with respect to the integration variable v = r / c i ,  obtaining 

v tanh (ci w) sech' (ci v)  
= k+O(E2).  

(1 + v 2 )  
(4.14) 

As ci+ 00, the integrand contributes only for 1 v 1 5 l/ci. We may therefore expand 
1/ (  1 + n2) in powers of 21 to obtain an expansion for the integral in inverse powers of 
ci. The leading-order contribution results from replacing 1 +v2 in the denominator 
by 1 .  Equation (4.14) then becomes 

(4.15) 

which, following an integration by parts, yields c; = e l k .  This is in complete 
agreement with the results of $2. 

Two features of the approximate dispersion relation (4.12) deserve comment. The 
curve ~ ( k )  plotted in figure 8 looks qualitatively like that for model B. It displays 
a well-defined, maximum growth rate occurring a t  k = k,. The slope o i (k , )  is finite 
for the smooth profile in contrast to the discrete profile B, where it is infinite, an 
effect that is known to occur in the absence of the mean shear [Maslowe 19811. 
Secondly, the quantity c, = w, (k , ) /k ,  is independent of the defect strength, E ,  to 
leading order in E .  To show this, we rewrite (4.12) as eF(wi /k )  = k. Differentiating with 
respect to k, and setting w,'(k) = 0 to fix k at  k,, we obtain c , F ( c m )  = - k , / s .  
Eliminating the right-hand side of this equation using the above form of (4.12) yields 
c m F ( c m )  = -F(c,). This equation for c ,  is independent of E ,  to leading order in E ,  

and remains valid as E + O + .  From figure 8, i t  follows that c, = 0(1), and hence that 
wi(k,) M k,. 

5. Induced mean flow 
The Reynolds stresses produced by a growing shear-flow instability modify the 

unstable shear profile (Huerre 1980, 1987). In  the absence of a nonlinear theory 
describing the equilibration of the instability, we confine ourselves here to  a 
calculation of the induced mean flow that is valid for short times only. Starting with 
the two-dimensional, incompressible Euler equations, one can readily show (Drazin 
& Reid 1981) that to leading order in E ,  the mean flow is of the form 

u ( y )  = u , ~  + 62 u2(y, t )  + o(s3), (5.1) 

where u2(y, t )  = - 
tanh y sech2 y 

;E 1 q5 l 2  (y) exp (2kci t )  = v2(y) exp (%kc i t ) ,  (5.2) 
Y2+'? 
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FIGURE 9. Induced mean flow v&) for E = 0.1, k / e  = 0.47, for which c, = 0.9. 

and S is the amplitude of the unstable mode with wavenumber k. The quantity 
u z ( y )  exp (-2kci t )  is shown in figure 9. Since 14 l 2  (y) = I 4 l 2  (-y) (see $4), the induced 
mean flow is an odd function of y. 

Although the above analysis is valid only for short times, it is indicative of the 
processes responsible for the ultimate equilibration of the instability. We see that the 
induced mean flow decreases the maximum shear that occurs a t  y = 0, suggesting a 
decrease in the growth rate of the instability. An important point is that for small 
ci the correction to the background shear becomes singular. Consequently, the 
correction is a strong function of the wavenumber k near k,. This is a signature of the 
critical-layer effects associated with nearly neutral modes. In the limit ci + Of, the 
naYve perturbation theory fails, and it is necessary to include either the effects of 
viscosity or of nonlinearity (or both) to  regularize this singularity (Davis 1969; 
Huerre 1980, 1987; Schade 1964; Stuart 1960; Watson 1960). In  contrast, as k + O  
(ci+ co) the induced mean flow vanishes uniformly in y. 

6. Discussion 
Our understanding of the nonlinear behaviour of the Rayleigh equation is 

extensive for those systems for which the nearly neutral mode dominates the physics. 
The goal of a theory, however, should be to describe the dynamics of the most 
unstable mode. The purpose of the present work has been to make such modes 
directly accessible to the theory. Using the novel feature demonstrated for discretized 
models, that of O ( E )  bandwidth of instability, we have re-examined the long-wave 
expansion for a smooth model of a defect in a mean shear flow. The presence of a 
second small parameter, E ,  measuring the ratio of excess shear in the defect to the 
mean shear, not only restricts k to k < O(E) ,  but also permits a double expansion to 
be carried out, in both e and k .  This substantially extends the applicability of the 
LWE to smooth profiles. In  particular, the technique readily extends to velocity 
profiles that are not antisymmetric in y. In  capturing the most unstable 
wavenumbers, the present work overcomes the difficulties encountered in earlier 
applications of the LWE, where the most unstable wavenumbers are O(1). Finally, 
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the present work provides a systematic, non-asymptotic extension of the work of Gill 
(1965) to non-neutral modes. 

All three models were found to behave alike in the limit of k + O .  Those cases 
having finite shear thickness all behave as a Kelvin-Helmholtz defect. The presence 
of an unbounded uniform part of the shear generated a divergent phase speed as 
k + 0. This divergence in c a t  small k can be explained on simple physical grounds as 
a spin up (or spin down) of the defect-induced vorticity by the strong uniform shear. 
For c > 0 the spin-up effect increases the growth rate of the instability, while for 
E < 0 the spin-down effect stabilizes the smallest wavenumbers. We find both 
travelling neutral modes and unstable stationary modes. 

The presence of the small parameter, E, facilitated obtaining the first two terms of 
the dispersion relation from the double expansion. Although we can show that both 
the expansion of the eigenfunctions and of the dispersion relation converge, the rate 
of convergence is difficult to assess. The fact that the coefficient A ,  of k2 is already 
O ( 2 )  suggests that the two leading terms of the expansion might yield quantitatively 
accurate results for sufficiently small c. The difficulty is compounded, however, by 
the well-known fact (Bender & Orszag 1978) that adding small terms to a function 
can dramatically alter the locations of its zeros. A numerical study of this issue will 
be necessary. 

These results give us confidence that we have correctly described the stability 
properties of the defect. Of these, of particular interest is the fact that for c > 0 the 
maximum growth rate of the instability, w,(k,), is O(c)  as c decreases to zero. This is 
a consequence of the fact that the longitudinal wavenumber k, corresponding to the 
maximum growth decreases to zero linearly with c while c ,  remains O(1). If we 
suppose that the defect is introduced into the background flow by a finite-amplitude 
perturbation of strength 6 ,  we are led to conclude that a small but finite-amplitude 
perturbation will lead to a dynamical instability on a timescale O( l/c), provided that 
the background shear will spin up the vorticity distribution generated by the defect. 
Thus, our calculation lends support to the widespread belief that unbounded Couette 
flow is subcritically unstable. 

Although we have studied the temporal problem, it is known that spatially 
growing modes occur in experiments (Miksad 1972). For example, in a mixing layer 
driven by a harmonic source, w must be real. In order to satisfy the dispersion 
relation, k may be forced to be complex. Thus the dispersion relation may have to 
be analytically continued to complex k and w .  For small I k I, the expansions provided 
here are, however, still valid. 

The presence of the singular denominator in the expression for the induced mean 
flow u2, together with the fact that Ic = O ( e ) ,  w = O(e) ,  and ci varies between zero and 
infinity within the narrow band of unstable modes, introduces a series of spatial 
scales into the problem. For ci very small, there appear to be three scales. There is 
the smallest scale y w ci due to the singular denominators, the O( 1) defect lengthscale, 
and the spatial decay lengthscale y w l / k  w 1/c. For the most unstable mode of the 
smooth shear profile, ci = 0(1), while the eigenfunction lengthscale l / k  is still 
O(l /c ) .  Here, there are only two scales. Although the vorticity is confined to a layer 
of 0(1) thickness, the eigenfunction extends out over a much larger region. This 
supports the view taken by Gill (1965) in his asymptotic theory. 

In conclusion, we have obtained what we believe to be the first, non-trivial, smooth 
profile for which a single application of the long-wave expansion is valid over the 
whole range of instability. This is useful since it provides a building block for 
extending the theory of shear flows a t  both the linearized and nonlinear level. The 



130 J .  Lerner and E. h'nohloch 

problem of developing a mode-coupled theory to study dynamics may become 
accessible via a Galerkin approximation relative to the above eigenfunctions. The 
goal would be to understand the tendency of free shear flows to evolve toward large, 
finite-amplitude vortices. That such solutions exist has been shown by Stuart 
(1967). 
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Appendix. Convergence properties of the expansion 
A. 1 .  Convergence of the eigenfunction expansion 

To study convergence of the LWE, we follow the approach taken by Drazin & 
Howard (196%). We begin by obtaining bounds on JY' 1. From $4, we have c,  = 0. 
Since we are considering unstable modes, e and ci are positive. We proceed as 
follows : 

where r+e tanh ( r )  = 21 determines r(u)  in the integrand. Using the inequality 
I la l  -Ibll < Ia,-bl < lc l l  + l b l ,  we have 

where L' and U' refer to lower and upper bounds on I Y'I .  Note that the 
superscript k restricts y to y 3 0. 

Since sech2 r ( v )  < 1, we have the following upper bound for 1 b 1 : 

Using (A 3). we find a lower bound to L' and an upper bound to U' : 

The above inequalities become 
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where the symmetry of the integrand has been exploited to restrict the range of 
integration to positive values. The integral satisfies 

We thus have 1-2€< 1 Y'J < 1+2€. (A 7) 

To prove convergence of the series for f' (see (3.3)), we will construct a majorizing 
sequence for f? ' ,  and establish uniform convergence. The function f' is then obtained 
using term by term integration. We considerft and Y+, restricting ourselves to y > 0. 
The proof is essentially identical for f and Y-. To proceed, define 

F+(V) = Y+(y), (A 8 a )  

E(1) =f i (y ) ,  (A 8 b )  

where 1 = exp (-y).  We recall that f,, = 1 and for n + 0, f i ( c / c )  = 0 and f i ' ( 0 0 )  = 0. 
With the prime denoting d/dy, one obtains (n 2 1) from (3.4) 

Eil(7) = - -_ Ids  2 F+ (F+fi)' 
1 Y+z 

= - J [ c d s f i ' + & I d $  1 Y+ F+'fi']. 

We define 2' E yn(y ) .  Equation (A 9) then becomes 

1 

where we have used (A 7 ) ,  and the integrand is a function of s. 
To apply (A lo), we first consider n = 0. Since& = 1, i t  follows that 

where we have used the fact that F+' (0) = 1. Equation (A 11) is potentially singular 
only as 7 + 0. To show that this limit is also well defined, we note that (u" - 1) 
= -2 + O(e)  and F+2 = 1 + O ( E ) .  The quantity (p++ l ) /q  becomes, using (A 1 )  : 

F++l u ( y )  dw sech2r(w) -- 1 - -ew(y) ey /+m 1 + e sech2 r(w) ' 
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Here the last inequality follows using y > 0 and sech2r < 4 e-2r = 4 eP2@-€ tanh(r)) 

< 4e-2vee+2E . Equation (A 13) simplifies, since 

We conclude that 

Combining this result with (A 11) yields 

Iterating (A lo), we obtain 

I Y n  I < (t.)"-'P(4 7 < (Sfl)n-lP, 

IP'I = Izkn.tyI < cknl f i ' l  

(A 17) 

and hence 

(A 18) 
3 C k n l  ynl < 2;Ck"(tfT)". B 

This last series converges if and only if I i k a  I < 1 for E < 1. It is possible that the 
above analysis extends to ci = 0. However, from equation (4.8), it is simple to show 
that !?'* contains a logarithmic branch cut a t  y = ici. In order to avoid potential 
singularities in the eigenfunctions or dispersion relation, we restrict our analysis to 
satisfy ci > 0. By the Weierstrass comparison test, the series for p' converges 
uniformly. A sufficient condition for convergence is 

Integrating term by by term yields a convergent expansion forf t .  It must be 
evaluated on the dispersion relation to be a solution. Given the potential singularity 
a t  ci = 0 a t  the neutral wavenumber k,, the radius of convergence is taken to be 

R = min(;,k,). 

Since k, = O(e), k, < 2/a for s sufficiently small. We have shown therefore that the 
eigenfunction expansion converges for all k < k,. 

A.2. Convergence of the dispersion relation 

In order to establish convergence of (4.3), we need to bound I A ,  I .  This requires 
bounding I f$(O) I and I f ; ' ( O )  1 .  We will use the bounds obtained in SA.1 to achieve 
this. To proceed, rewriteg a n d g '  in terms of 7. Thenfi'(y) = -r&'(q). Since y = O  
becomes 7 = 1, we therefore have 

C:(O) =fi(l), (A 21a) 

and K(0) = -,f". (A 21 6 )  
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From (A 17) and (A 21), we now obtain 

Ifi'(0) I E I Y n  l(1) < ($g)n-lP. (A 22a)  

Since V E  (0, l), fi(0) = 0, and by (A 17),  lfi' (7) I < ($a)"-'P, we have 

IfiW I = l f i  I(1) < ( W - l P .  (A 22 b )  

It is elementary to show that the same bounds hold if one replaces the + superscripts 
in (A 22) with - .  

We proceed to bound (4.44. For n > 1 we obtain 

I An I G I ~0 I ( ii I.G(O) I I.L-~(o) I )  
k=O 

+ I y+ (O) I I y- (O) I [ ( lfi;k(O) I I,&(0) I + I A ; k ( O )  I I f i ( O )  I ) 
k=O 

< lAoI{2($cr)n-'/3+(n-1) ( + c T ) ~ - ~ / ~ ~ )  

+ (1  + 2 ~ ) ~  {6($a)n-1 /3+ 2(2n - 3) (+CT)"-~  /12} E gn. (A 23) 

The radius of convergence of the majorizing series Ckngn  is determined by the 
asymptotic behaviour of the g n  : 

R = lim I gn I 
n + m  

= lim I (A,  + 4( 1 + 2 ~ ) ~ )  p2 n(&r)" I -lln = u/u.  9 (A 24) 
n + m  

Hence, for k satisfying k < 2 / a ,  the expression for the dispersion relation converges. 
This holds only as long as the eigenfunctions are well defined ; so once again, since the 
above bound is larger than k,, we take k < k,  as the actual domain of convergence. 
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